Ad

Lex Fridman shared this lecture by Andrew Trask in January 2020, part of the MIT Deep Learning Lecture Series.

OUTLINE:

0:00 – Introduction
0:54 – Privacy preserving AI talk overview
1:28 – Key question: Is it possible to answer questions using data we cannot see?
5:56 – Tool 1: remote execution
8:44 – Tool 2: search and example data
11:35 – Tool 3: differential privacy
28:09 – Tool 4: secure multi-party computation
36:37 – Federated learning
39:55 – AI, privacy, and society
46:23 – Open data for science
50:35 – Single-use accountability
54:29 – End-to-end encrypted services
59:51 – Q&A: privacy of the diagnosis
1:02:49 – Q&A: removing bias from data when data is encrypted
1:03:40 – Q&A: regulation of privacy
1:04:27 – Q&A: OpenMined
1:06:16 – Q&A: encryption and nonlinear functions
1:07:53 – Q&A: path to adoption of privacy-preserving technology
1:11:44 – Q&A: recommendation systems

tt ads

Leave a Reply

Your email address will not be published. Required fields are marked *
You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

This site uses Akismet to reduce spam. Learn how your comment data is processed.