Yannic Kilcher explains the paper “Hopfield Networks is All You Need.”

Hopfield Networks are one of the classic models of biological memory networks. This paper generalizes modern Hopfield Networks to continuous states and shows that the corresponding update rule is equal to the attention mechanism used in modern Transformers. It further analyzes a pre-trained BERT model through the lens of Hopfield Networks and uses a Hopfield Attention Layer to perform Immune Repertoire Classification.

Content outline:

  • 0:00 – Intro & Overview
  • 1:35 – Binary Hopfield Networks
  • 5:55 – Continuous Hopfield Networks
  • 8:15 – Update Rules & Energy Functions
  • 13:30 – Connection to Transformers
  • 14:35 – Hopfield Attention Layers
  • 26:45 – Theoretical Analysis
  • 48:10 – Investigating BERT
  • 1:02:30 – Immune Repertoire Classification

Visual scenes are often comprised of sets of independent objects. Yet, current vision models make no assumptions about the nature of the pictures they look at.

Yannic Kilcher explore a paper on object-centric learning.

By imposing an objectness prior, this paper a module that is able to recognize permutation-invariant sets of objects from pixels in both supervised and unsupervised settings. It does so by introducing a slot attention module that combines an attention mechanism with dynamic routing.

Content index:

  • 0:00 – Intro & Overview
  • 1:40 – Problem Formulation
  • 4:30 – Slot Attention Architecture
  • 13:30 – Slot Attention Algorithm
  • 21:30 – Iterative Routing Visualization
  • 29:15 – Experiments
  • 36:20 – Inference Time Flexibility
  • 38:35 – Broader Impact Statement
  • 42:05 – Conclusion & Comments

How far can you go with ONLY language modeling?

Can a large enough language model perform NLP task out of the box?

OpenAI take on these and other questions by training a transformer that is an order of magnitude larger than anything that has ever been built before and the results are astounding.

Yannic Kilcher explores.

Paper

Time index:

  • 0:00 – Intro & Overview
  • 1:20 – Language Models
  • 2:45 – Language Modeling Datasets
  • 3:20 – Model Size
  • 5:35 – Transformer Models
  • 7:25 – Fine Tuning
  • 10:15 – In-Context Learning
  • 17:15 – Start of Experimental Results
  • 19:10 – Question Answering
  • 23:10 – What I think is happening
  • 28:50 – Translation
  • 31:30 – Winograd Schemes
  • 33:00 – Commonsense Reasoning
  • 37:00 – Reading Comprehension
  • 37:30 – SuperGLUE
  • 40:40 – NLI
  • 41:40 – Arithmetic Expressions
  • 48:30 – Word Unscrambling
  • 50:30 – SAT Analogies
  • 52:10 – News Article Generation
  • 58:10 – Made-up Words
  • 1:01:10 – Training Set Contamination
  • 1:03:10 – Task Exampleshttps://arxiv.org/abs/2005.14165
    https://github.com/openai/gpt-3

Yannic Kilcher investigates BERT and the white paper associated with it https://arxiv.org/abs/1810.04805

Abstract:We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.