Here’s an interesting tutorial on prepping image data for CNNs.

It is challenging to know how to best prepare image data when training a convolutional neural network. This involves both scaling the pixel values and use of augmentation techniques during both the training and evaluation of the model. Instead of testing a wide range of options, a useful shortcut […]

Here’s an interesting article in Nature about the use of AI in evaluating embryos with AI — another use of computer vision in the medical field. Could this bring down healthcare costs? What if the algorithm mislabels an embryo? Are there ethical implications?

Deep learning algorithms, in particular convolutional neural networks (CNNs), have recently been used to address a number of medical-imaging problems, such as detection of diabetic retinopathy,18 skin lesions,19 and diagnosing disease.20 They have become the technique of choice in computer vision and they are the most successful type of models for image analysis. Unlike regular neural networks, CNNs contain neurons arranged in three dimensions (i.e., width, height, depth). Recently, deep architectures of CNNs such as Inception21 and ResNet22 have dramatically increased the progress rate of deep learning methods in image classification.23 In this paper, we sought to use deep learning to accurately predict the quality of human blastocysts and help select the best single embryo for transfer (Fig. 1).