Donald Knuth is one of the greatest and most impactful computer scientists and mathematicians ever. He is the recipient in 1974 of the Turing Award, considered the Nobel Prize of computing.

He is the author of the multi-volume work, the magnum opus, The Art of Computer Programming. He made several key contributions to the rigorous analysis of the computational complexity of algorithms. He popularized asymptotic notation, that we all affectionately know as the big-O notation.

He also created the TeX typesetting which most computer scientists, physicists, mathematicians, and scientists and engineers use to write technical papers and make them look beautiful.

Lex Fridman interviews him in this video.

EPISODE LINKS:
The Art of Computer Programming (book): https://amzn.to/39kxRwB

OUTLINE:
0:00 – Introduction
3:45 – IBM 650
7:51 – Geeks
12:29 – Alan Turing
14:26 – My life is a convex combination of english and mathematics
24:00 – Japanese arrow puzzle example
25:42 – Neural networks and machine learning
27:59 – The Art of Computer Programming
36:49 – Combinatorics
39:16 – Writing process
42:10 – Are some days harder than others?
48:36 – What’s the “Art” in the Art of Computer Programming
50:21 – Binary (boolean) decision diagram
55:06 – Big-O notation
58:02 – P=NP
1:10:05 – Artificial intelligence
1:13:26 – Ant colonies and human cognition
1:17:11 – God and the Bible
1:24:28 – Reflection on life
1:28:25 – Facing mortality
1:33:40 – TeX and beautiful typography
1:39:23 – How much of the world do we understand?
1:44:17 – Question for God

Lex Fridman interviews Melanie Mitchell in the latest edition of his AI Podicast.

Melanie Mitchell is a professor of computer science at Portland State University and an external professor at Santa Fe Institute. She has worked on and written about artificial intelligence from fascinating perspectives including adaptive complex systems, genetic algorithms, and the Copycat cognitive architecture which places the process of analogy making at the core of human cognition. From her doctoral work with her advisors Douglas Hofstadter and John Holland to today, she has contributed a lot of important ideas to the field of AI, including her recent book, simply called Artificial Intelligence: A Guide for Thinking Humans. This conversation is part of the Artificial Intelligence podcast.

EPISODE LINKS:
AI: A Guide for Thinking Humans (book) – https://amzn.to/2Q80LbP
Melanie Twitter: https://twitter.com/MelMitchell1

OUTLINE:
0:00 – Introduction
2:33 – The term “artificial intelligence”
6:30 – Line between weak and strong AI
12:46 – Why have people dreamed of creating AI?
15:24 – Complex systems and intelligence
18:38 – Why are we bad at predicting the future with regard to AI?
22:05 – Are fundamental breakthroughs in AI needed?
25:13 – Different AI communities
31:28 – Copycat cognitive architecture
36:51 – Concepts and analogies
55:33 – Deep learning and the formation of concepts
1:09:07 – Autonomous vehicles
1:20:21 – Embodied AI and emotion
1:25:01 – Fear of superintelligent AI
1:36:14 – Good test for intelligence
1:38:09 – What is complexity?
1:43:09 – Santa Fe Institute
1:47:34 – Douglas Hofstadter
1:49:42 – Proudest moment