Jabrils talks about creating an explorable and interactive game world that’s truly random and unique.

Quantum computers are right around the corner, so the question must be asked, what could a game like minecraft look like on a quantum computer? We teamed up with @Qiskit, who has public Quantum Computers to use to give this a shot.

Related links:

In this episode, Seeker tackles the question that’s on everyone’s minds: what will it take to have quantum internet in our home?

Yes, Virginia, a quantum internet is in the works.

The U.S. Department of Energy recently rolled out a blueprint describing research goals and engineering barriers on the way to quantum internet.

The DOE’s latest blueprint for a quantum internet in the U.S. has four key milestones. The first is to make sure quantum information sent over current fiber optic cables is secure. Then to establish entangled networks across colleges or cities, then throughout states, and finally for the whole country.

In this video, Sabine Hossenfelder explains how public key cryptography works on the internet today, using RSA as example, what the risk is that quantum computers pose for internet security, what post-quantum cryptography is, how quantum key distribution works, and what quantum cryptography is.

Video contents:

  • 0:00 Intro
  • 0:31 Public Key Cryptography
  • 2:43 Risk posed by Quantum Computers
  • 4:03 Post Quantum Cryptography
  • 5:31 Quantum Key Distribution
  • 10:25 Quantum Cryptography and Summary
  • 11:16 NordVPN Sponsor Message
  • 12:28 Thanks

Learn all about Data Structures in this lecture-style course from freeCodeCamp.org

You will learn what Data Structures are, how we measure a Data Structures efficiency, and then hop into talking about 12 of the most common Data Structures which will come up throughout your Computer Science journey.

Course Contents

  • (00:00) Introduction
  • (01:06) Timestamps
  • (01:23) Script and Visuals
  • (01:34) References + Research
  • (01:56) Questions
  • (02:12) Shameless Plug
  • (02:51) What are Data Structures?
  • (04:36) Series Overview
  • (06:55) Measuring Efficiency with BigO Notation
  • (09:45) Time Complexity Equations
  • (11:13) The Meaning of BigO
  • (12:42) Why BigO?
  • (13:18) Quick Recap
  • (14:27) Types of Time Complexity Equations
  • (19:42) Final Note on Time Complexity Equations
  • (20:21) The Array
  • (20:58) Array Basics
  • (22:09) Array Names
  • (22:59) Parallel Arrays
  • (23:59) Array Types
  • (24:30) Array Size
  • (25:45) Creating Arrays
  • (26:11) Populate-First Arrays
  • (28:09) Populate-Later Arrays
  • (30:22) Numerical Indexes
  • (31:57) Replacing information in an Array
  • (32:42) 2-Dimensional Arrays
  • (35:01) Arrays as a Data Structure
  • (42:21) Pros and Cons
  • (43:33) The ArrayList
  • (44:42) Structure of the ArrayList
  • (45:19) Initializing an ArrayList
  • (47:34) ArrayList Functionality
  • (49:30) ArrayList Methods
  • (50:26) Add Method
  • (53:57) Remove Method
  • (55:33) Get Method
  • (55:59) Set Method
  • (56:57) Clear Method
  • (57:30) toArray Method
  • (59:00) ArrayList as a Data Structure
  • (1:03:12) Comparing and Contrasting with Arrays
  • (1:05:02) The Stack
  • (1:05:06) The Different types of Data Structures
  • (1:05:51) Random Access Data Structures
  • (1:06:10) Sequential Access Data Structures
  • (1:07:36) Stack Basics
  • (1:09:01) Common Stack Methods
  • (1:09:45) Push Method
  • (1:10:32) Pop Method
  • (1:11:46) Peek Method
  • (1:12:27) Contains Method
  • (1:13:23) Time Complexity Equations
  • (1:15:28) Uses for Stacks
  • (1:18:01) The Queue
  • (1:18:51) Queue Basics
  • (1:20:44) Common Queue Methods
  • (1:21:13) Enqueue Method
  • (1:22:20) Dequeue Method
  • (1:23:08) Peek Method
  • (1:24:15) Contains Method
  • (1:25:05) Time Complexity Equations
  • (1:27:05) Common Queue Uses
  • (1:28:16) The Linked List
  • (1:31:37) LinkedList Visualization
  • (1:33:55) Adding and Removing Information
  • (1:41:28) Time Complexity Equations
  • (1:44:26) Uses for LinkedLists
  • (1:47:19) The Doubly-LinkedList
  • (1:48:44) Visualization
  • (1:50:56) Adding and Removing Information
  • (1:58:30) Time Complexity Equations
  • (1:59:06) Uses of a Doubly-LinkedList
  • (2:00:21) The Dictionary
  • (2:01:15) Dictionary Basics
  • (2:02:00) Indexing Dictionaries
  • (2:02:40) Dictionary Properties
  • (2:05:53) Hash Table Mini-Lesson
  • (2:13:26) Time Complexity Equations
  • (2:16:39) Trees
  • (2:16:55) Introduction to Hierarchical Data
  • (2:18:54) Formal Background on the Tree
  • (2:20:03) Tree Terminology and Visualization
  • (2:25:08) Different types of Trees
  • (2:28:07) Uses for the Tree
  • (2:29:00) Tries
  • (2:29:50) Trie Basics
  • (2:30:41) Trie Visualization
  • (2:34:33) Flagging
  • (2:35:15) Uses for Tries
  • (2:38:25) Heaps
  • (2:38:51) Heap Basics
  • (2:39:19) Min-Heaps
  • (2:40:07) Max-Heaps
  • (2:40:59) Building Heaps
  • (2:44:20) Deleting from Heaps
  • (2:46:00) Heap Implementations
  • (2:48:15) Graphs
  • (2:49:25) Graph Basics
  • (2:52:04) Directed vs. Undirected Graphs
  • (2:53:45) Cyclic vs. Acyclic Graphs
  • (2:55:04) Weighted Graphs
  • (2:55:46) Types of Graphs
  • (2:58:20) Conclusion
  • (2:58:43) Shameless Plug