Visual scenes are often comprised of sets of independent objects. Yet, current vision models make no assumptions about the nature of the pictures they look at.

Yannic Kilcher explore a paper on object-centric learning.

By imposing an objectness prior, this paper a module that is able to recognize permutation-invariant sets of objects from pixels in both supervised and unsupervised settings. It does so by introducing a slot attention module that combines an attention mechanism with dynamic routing.

Content index:

  • 0:00 – Intro & Overview
  • 1:40 – Problem Formulation
  • 4:30 – Slot Attention Architecture
  • 13:30 – Slot Attention Algorithm
  • 21:30 – Iterative Routing Visualization
  • 29:15 – Experiments
  • 36:20 – Inference Time Flexibility
  • 38:35 – Broader Impact Statement
  • 42:05 – Conclusion & Comments

Yannic Kilcher investigates BERT and the white paper associated with it https://arxiv.org/abs/1810.04805

Abstract:We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.