Scientists might have reached the theoretical limit of how strong this particular material can get, designing the first-ever super-light carbon nanostructure that’s stronger than diamond.

The latest development in the nanoworld of carbon comes from a team that has designed something called carbon plate-nanolattices. Under a scanning electron microscope, they look like little cubes, and the math indicated that this structure would be incredibly strong, but it’s been too difficult to actually make, until now.

The team’s success was made possible by a 3D printing process called two-photon polymerization direct laser writing, which is essentially 3D printing on the level of atoms and photons.

Find out more about this technique and what the result could mean for the future of medicine, electronics aerospace and more in this Elements.

This Seeker video explains.

Practical Engineering explores a scalable (and unexpected) means of mass energy storage.

Electricity faces a fundamental problem that comes with pretty much any product that’s provided on-demand: our ability to generate large amounts of it doesn’t match up that closely with when we need it. The storage of electricity for later use, especially on a large scale, is quite challenging. That’s not to say that we don’t store energy at grid scale though, and there’s one type of storage that makes up the vast majority of our current capacity.