This full 6 hour+ course provides a complete introduction to Graph Theory algorithms in computer science.

⭐️ Course Contents ⭐️
⌨️ (0:00:00) Graph Theory Introduction
⌨️ (0:13:53) Problems in Graph Theory
⌨️ (0:23:15) Depth First Search Algorithm
⌨️ (0:33:18) Breadth First Search Algorithm
⌨️ (0:40:27) Breadth First Search grid shortest path
⌨️ (0:56:23) Topological Sort Algorithm
⌨️ (1:09:52) Shortest/Longest path on a Directed Acyclic Graph (DAG)
⌨️ (1:19:34) Dijkstra’s Shortest Path Algorithm
⌨️ (1:43:17) Dijkstra’s Shortest Path Algorithm | Source Code
⌨️ (1:50:47) Bellman Ford Algorithm
⌨️ (2:05:34) Floyd Warshall All Pairs Shortest Path Algorithm
⌨️ (2:20:54) Floyd Warshall All Pairs Shortest Path Algorithm | Source Code
⌨️ (2:29:19) Bridges and Articulation points Algorithm
⌨️ (2:49:01) Bridges and Articulation points source code
⌨️ (2:57:32) Tarjans Strongly Connected Components algorithm
⌨️ (3:13:56) Tarjans Strongly Connected Components algorithm source code
⌨️ (3:20:12) Travelling Salesman Problem | Dynamic Programming
⌨️ (3:39:59) Travelling Salesman Problem source code | Dynamic Programming
⌨️ (3:52:27) Existence of Eulerian Paths and Circuits
⌨️ (4:01:19) Eulerian Path Algorithm
⌨️ (4:15:47) Eulerian Path Algorithm | Source Code
⌨️ (4:23:00) Prim’s Minimum Spanning Tree Algorithm
⌨️ (4:37:05) Eager Prim’s Minimum Spanning Tree Algorithm
⌨️ (4:50:38) Eager Prim’s Minimum Spanning Tree Algorithm | Source Code
⌨️ (4:58:30) Max Flow Ford Fulkerson | Network Flow
⌨️ (5:11:01) Max Flow Ford Fulkerson | Source Code
⌨️ (5:27:25) Unweighted Bipartite Matching | Network Flow
⌨️ (5:38:11) Mice and Owls problem | Network Flow
⌨️ (5:46:11) Elementary Math problem | Network Flow
⌨️ (5:56:19) Edmonds Karp Algorithm | Network Flow
⌨️ (6:05:18) Edmonds Karp Algorithm | Source Code
⌨️ (6:10:08) Capacity Scaling | Network Flow
⌨️ (6:19:34) Capacity Scaling | Network Flow | Source Code
⌨️ (6:25:04) Dinic’s Algorithm | Network Flow
⌨️ (6:36:09) Dinic’s Algorithm | Network Flow | Source Code

Data science and AI have been the force behind the rise of Python adoption .

According to the State of the Octoverse report, Python has beaten out Java to become the second most used language after JavaScript.

The growth of Python can be correlated with a wide range of tools and frameworks. The most notable ones are the surge of Jupyter Notebook, TensorFlow, and NLTK. Jupyter Notebook has risen over 100% YoY for last thee years. Besides, TensorFlow and NLTK were among the most popular projects, thereby increasing the number of contribution from Python users; TensorFlow was fifth in the number of contribution with 9.9k.

Dani, a game developer, recently made a game and decided to train an AI to play it.

A couple of weeks ago I made a video “Making a Game in ONE Day (12 Hours)”, and today I’m trying to teach an A.I to play my game!

Basically I’m gonna use Neural Networks to make the A.I learn to play my game.

This is something I’ve always wanted to do, and I’m really happy I finally got around to do it. Some of the biggest inspirations for this is obviously carykh, Jabrils & Codebullet!

Once upon a time, I made my living programming in Java. When I left for the greener pastures of the .NET Framework, I thought for sure that I’d never see much Java again. However, I have encountered more Java of late in the big data world.

For those of you unfamiliar with Java or really out of practice with it, here’s a great two hour coding tutorial to teach you the ropes.