Geek’s Lesson provides this full nine hour source on quantum mechanics.

Quantum mechanics (QM; also known as #quantum #physics, quantum theory, the wave mechanical model, or #matrixmechanics), including quantum field theory, is a fundamental theory in physics which describes nature at the smallest scales of energy levels of atoms and subatomic particles. 

Table of Contents

  • (0:00) Lesson 1: Fundamentals
  • (10:03) Lesson 2: Complex Numbers in Quantum Mechanics
  • (27:20) Lesson 3: Representing Complex Things
  • (43:03) Lesson4: Superposition and Stationary States
  • (1:0:00) Lesson5: Infinite Square Well
  • (1:19:48) Lesson 6: More ISW + Dirac Notation
  • (1:39:07) Lesson 9: QSHO, Operator Method, part 1
  • (1:55:37) Lesson 10: QSHO Part 2
  • (2:18:42) Lesson11 SHO Analytical
  • (2:32:56) Lesson13 Free Particle (redo)
  • (3:00:28) Lesson14 More Fourier Transforms, inner products
  • (3:22:10) Lesson15 Delta Bound States
  • (3:32:50) Lesson16: Scattering States of the Dirac Delta Potential + More DFT concepts
  • (4:06:17) Finite Square Well (updated)
  • (4:32:43) Tunneling and Bonding
  • (5:08:05) Review (or intro) to Linear Algebra + Notation
  • (6:03:52) Formalism I
  • (6:14:20) Formalism II More Quantum Formalism
  • (6:43:49) Formalism III: Time Evolution + More Change of Basis
  • (7:39:45) Exam 3 Prep, More time evolution of Ammonia molecule
  • (7:55:25) SWE in 3D
  • (8:25:07) Hydrogen Solutions + Angular Momentum
  • (8:31:14) Angular Momentum-II
  • (8:57:34) Spin 1/2

Sabine Hossenfelder explains one of the most common misunderstandings about quantum mechanics — that quantum mechanics is about making things discrete or quantifiable.

This must be one of the most common misunderstandings about quantum mechanics, But is an understandable misunderstanding because the word “quantum” suggests that quantum mechanics is about small amounts of something. Indeed, if you ask Google for the meaning of quantum, it offers the definition “a discrete quantity of energy proportional in magnitude to the frequency of the radiation it represents.” Problem is that just because energy is proportional to frequency does not mean it is discrete. In fact, in general it is not.

Sabine Hossenfelder explains the most important and omnipresent ingredients of quantum mechanics: what is the wave-function and how do you calculate with it.

Much of what makes quantum mechanics difficult is really not the mathematics. In fact, quantum mechanics is one of the easier theories of physics. The mathematics is mostly just linear algebra: vectors, matrices, linear transformations, and so on. You’ve learned most of it in school already! However, the math of quantum mechanics looks funny because physicists use a weird notation, called the bra-ket notation. I tell you how this works, what it’s good for, and how to calculate with it.

Commercially viable quantum computing could be here sooner than you think, thanks to a new innovation that shrinks quantum tech down onto a chip: a cryochip.

Seeker explains:

It seems like quantum computers will likely be a big part of our computing future—but getting them to do anything super useful has been famously difficult. Lots of new technologies are aiming to get commercially viable quantum computing here just a little bit faster, including one innovation that shrinks quantum technology down onto a chip.

Because our most powerful classical computers are limited in the chemical modeling they can perform, so are the solutions they can unlock.

Quantum computing could change that.

On this episode of Quantum Impact, Dr. Krysta Svore, general manager of quantum systems and software at Microsoft, heads to Richland, Washington to meet with Dr. Nathan Baker and Dr. Bojana Ginovska at Pacific Northwest National Laboratory (PNNL).

Microsoft is partnering with PNNL to bring the power of quantum to our understanding of chemistry. One of PNNL’s areas of interest is catalysis, or the process of converting chemicals from one form to another, and Nathan shares the complexity involved in truly understanding that process.

Bojana, a computational chemist, then speaks with Krysta about her work studying nitrogenase, an enzyme present in healthy soil. She’s exploring how we can turn nitrogen into ammonia for agriculture in a way that doesn’t deplete our energy resources.

Together with PNNL, Microsoft is working to develop quantum algorithms to help solve challenging problems in chemistry, which will have hugely positive impacts on our world and our planet’s future.

Lex Fridman interviews Roger Penrose, a physicist, mathematician, and philosopher at University of Oxford.

He has made fundamental contributions in many disciplines from the mathematical physics of general relativity and cosmology to the limitations of a computational view of consciousness. This conversation is part of the Artificial Intelligence podcast.

Time Index:

  • 0:00 – Introduction
  • 3:51 – 2001: A Space Odyssey
  • 9:43 – Consciousness and computation
  • 23:45 – What does it mean to “understand”
  • 31:37 – What’s missing in quantum mechanics?
  • 40:09 – Whatever consciousness is, it’s not a computation
  • 44:13 – Source of consciousness in the human brain
  • 1:02:57 – Infinite cycles of big bangs
  • 1:22:05 – Most beautiful idea in mathematics