Seeker explains how a new kind of nuclear battery could power missions into deep space.

In April of 2020, NASA researchers announced they had come up with a new approach to fusion that has the potential to power missions into deep space, and maybe even future laptops here on Earth. This is really exciting news as when it comes to making energy, nuclear fusion is the ultimate goal because of the promise it holds of clean limitless energy that is available on demand.

Scientists might have reached the theoretical limit of how strong this particular material can get, designing the first-ever super-light carbon nanostructure that’s stronger than diamond.

The latest development in the nanoworld of carbon comes from a team that has designed something called carbon plate-nanolattices. Under a scanning electron microscope, they look like little cubes, and the math indicated that this structure would be incredibly strong, but it’s been too difficult to actually make, until now.

The team’s success was made possible by a 3D printing process called two-photon polymerization direct laser writing, which is essentially 3D printing on the level of atoms and photons.

Find out more about this technique and what the result could mean for the future of medicine, electronics aerospace and more in this Elements.

This Seeker video explains.

Commercially viable quantum computing could be here sooner than you think, thanks to a new innovation that shrinks quantum tech down onto a chip: a cryochip.

Seeker explains:

It seems like quantum computers will likely be a big part of our computing future—but getting them to do anything super useful has been famously difficult. Lots of new technologies are aiming to get commercially viable quantum computing here just a little bit faster, including one innovation that shrinks quantum technology down onto a chip.